Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cells.
نویسندگان
چکیده
Parkinson's disease is an environmentally influenced, neurodegenerative disease of unknown origin that is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. Arsenic is an environmental contaminant found naturally in ground water, industrial waste, and fertilizers. The initial goal of the present study was to determine if a mixture of arsenite (As(+3)) and dopamine (DA) could cause enhanced degeneration of dopaminergic neuronal cells. Additional goals were to determine the mechanism (apoptosis or necrosis) of As- and DA-induced cell death and if death could be attenuated by antioxidants. The cell culture model employed was the SH-SY5Y neuroblastoma cell line that has been shown to possess differentiated characteristics of dopaminergic neurons. The results demonstrated that a mixture of As(+3) and DA was synergistic in producing the death of the SH-SY5Y cells when compared with exposure to either agent alone. A mixture of 10muM As(+3) and 100muM DA produced almost a complete loss of cell viability over a 24-h period of exposure, whereas, each agent alone had minimal toxicity. It was shown that necrosis, and not apoptosis, was the mechanism of cell death produced by exposure of the SH-SY5Y cells to the mixture of As(+3) and DA. It was also demonstrated that the antioxidants, N-acetylcysteine, and Sulforaphane, attenuated the toxicity of the mixture of As(+3) and DA to the SH-SY5Y cells. This study provides initial evidence that As(+3) and DA synergistically can cause enhanced toxicity in cultured neuronal cells possessing dopaminergic differentiation.
منابع مشابه
Neuroprotective effects of Salvia aristata Aucher ex Benth. on hydrogen peroxide induced apoptosis in SH-SY5Y neuroblastoma cells
Background and objectives: Oxidative stress is implicated in the neuronal damage associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotropic lateral sclerosis and cerebral ischemic stroke. The present work was designed to establish the neuroprotective effects of Salvia aristata extract on H2O2-induced apoptosis in human dopaminergic ...
متن کاملP 36: Protective Effects of Crocin on D-Galactose Induced Aging Model in Human Neuroblastoma Cells
Introduction: D-galactose (D-gal) is well known as an appropriate agent to induced aging effects in the in vivo and in vitro models. In the present study, we selected crocin, the main constituent of Crocus sativus L. (Saffron), against D-gal cytotoxicity in human neuroblastoma SH-SY5Y cells. Materials and Methods: Cells were pretreated with crocin (25-500 µM) for 24 h and then expos...
متن کاملRheum turkestanicum Janisch Root Extract Mitigates 6-OHDA-Induced Neuronal Toxicity Against Human Neuroblastoma SH-SY5Y Cells
Background and Objective: Rheum turkestanicum (R. turkestanicum) has been known to reduce inflammation and has antioxidant properties such as protective effect in neurons. This study aimed to determine the effects of R. turkestanicum on neuronal toxicity induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells. Materials and Methods: MTT and DNA frag...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملEvaluation of the Anti-apoptotic and Anti-cytotoxic Effect of Epicatechin Gallate and Edaravone on SH-SY5Y Neuroblastoma Cells
Introduction: Parkinson disease (PD) is the second most common neurodegenerative disease affecting older individuals with signs of motor disability and cognitive impairment. Epicatechin (EC) and edaravone have neuroprotective effects most probably due to their antioxidant activity; however, a limited number of studies have considered their role in PD. This research aimed at investigating the ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 102 2 شماره
صفحات -
تاریخ انتشار 2008